

Greening Buildings for Carbon Neutrality

April 27, 2022| Presented by Marc P Brune, PE

LEWIS AND CLARK | 1805

FIRST AND STARK STREET | 1852 PORTLAND, OR

NG OFFICE.

CELILO FALLS | OREGON

10.12.13

Global Carbon Cycle

UNITED STATES ENERGY USE BY SECTOR

National Energy Consumption by Sector. US EIA 2017

Emissions by Sector

Global CO, Emissions by Sector

Adapted from 2019 Global Status Report, Global Alliance for Building and Construction (GABC) and Architecture 2030.

• The building and construction sector has a vital role to play in eliminating carbon, as it is responsible for approximately 40% of global carbon emissions.

Typical Energy Use

Typical Home Energy Use – Pacific Northwest

Lights

Domestic Hot Water

(Chart

with Auto Shut Off

Insulation

O dreamstime.com

ID 209115974 © Ivansmuk

Electrification

Heating, Cooling, Kitchens

Man And Anno 1990 Anno 1990 Anno 1990 Anno 1990

Why?

Why should we electrify buildings?

Natural Gas

Greenhouse Gases

Global Warming Potential

It's a better fuel all around as long as you don't spill it. But it doesn't take much methane leakage to ruin your whole day if you care about climate change.

The breaking point for natural gas leakage is about 3 percent. If more than that leaks, the fuel has a bigger climate effect than burning coal.

- PAUL SHEPSON

PURDUE'S JONATHAN AMY DISTINGUISHED PROFESSOR OF ANALYTICAL AND ATMOSPHERIC CHEMISTRY

https://www.purdue.edu/newsroom/releases/2017/Q1/estimates-of-emissions-from-natural-gas-fueled-plants-much-too-low,-study-finds.htm

Do you see the methane leak billowing from this tank?

EagleClaw Midstream Pecos Plant

Electricity

NEW ELECTRICITY | NATIONALLY

Anticipated Generation

·....

2019-2023

Source: U.S. Energy Information Administration, Form EIA-860, 'Annual Electric Generator Report.' | These data reflect plans as of December 31, 2018 Other Energy Sources include batteries, hydrogen, purchased steam, sulfur, tire-derived fuels and other miscellaneous energy sources. | https://www.eia.gov/electricity/annual/html/epa_04_05.html

US POWER SECTOR CO₂ EMISSIONS INTENSITY

Source: https://emissionsindex.org/#chart-1-view-1

Decarbonization Plans

Oregon Passed House Bill 2021:

- Commits to 100% Clean & Renewable Electricity by 2040
- Bans the construction or expansion of new natural gas plants in Oregon.

Additionally:

- Provides \$50 million for community-based clean energy projects.
- Invests in the creation of good, family-wage jobs that benefit frontline communities.
- Requires good wages and benefits for workers employed on larger renewable energy projects.
- Requires tribal consultation on clean energy projects that could impact sites of archeological, traditional, cultural, and religious importance.
- Allows cities in Oregon to create so-called "green tariffs," where they agree to pay utilities more money for power from a cleaner mix of sources in order to meet their own climate goals

www.climatesolutions.org

https://www.opb.org/article/2021/06/26/oregon-lawmakers-carbonemissions-reduction-goals-state-energy-grid/

REGULATION ROLLBACKS

PASSED BANS

BANS IN PROGRESS

EXISTING LAWS

Cooking

Impact on Air Quality

Efficiency comparison

Speed, Precision and Ease of Use

Michelin Star Chefs switching to all electric kitchens

Gas

Electric Conduction Cooktop

Cooktop

Electric Induction

Gas emissions from combustion	No gas emissions from combustion	No gas emissions from combustion
~40% Efficiency	~75% Efficiency	~85% Efficiency
8 minutes to boil 0.75L water	7 minutes to boil 0.75L	4 minutes to boil 0.75L water

HEATING FUNDAMENTALS

Conventional Gas Heating

BOILER | FURNACE | WATER HEATER

Condensing Gas Heating

BOILER | FURNACE | WATER HEATER

HEATING FUNDAMENTALS

Electric Resistance

BOILER | FURNACE | WATER HEATER

Heat Pump Fundamentals

Heat pumps transfer heat from a low temperature source to a higher temperature destination

A heat pump is literally an air conditioner working in reverse.

Air Conditioning and Refrigeration

When you are trying to move heat **out of a cooler environment** to a warmer environment, we call it a refrigerator or air conditioner.

When you are trying to move heat **into a warmer environment** from a colder environment, we call it a heat pump.

REFRIGERATION CYCLE

HEAT PUMP EFFICIENCY

Coefficient of Performance (CoP)

HEATING EFFICIENCY = 400%/100% = 4

COOLING EFFICIENCY

= 300%/100% = 3

Making it Pay

- Incentives: Energy Trust of Oregon
 - Heat Pumps
 - Heat Pump Water Heaters
 - Solar
- Solar:
 - Oregon Department of Energy
 - Energy Trust
 - Federal Tax Credit

Solar Example

- 9.6kW System
 - Cost before incentives: \$36,000
 - Incentives: -\$11,000
 - Cost after incentives: \$25,000
 - Generation: \$1,100/year (\$92/month)
 - Equivalent Mortgage Value: \$20,000

There are opportunities even in the most difficult moments.

WANGARI MAATHAI
Green Belt Movement Founder | 2004 Noble Laureate

LIVING BUILDING CHALLENGE

A Visionary Path to a Regenerative Future

statistics 58,000 sf Full ILFI 3.1 Certification 500 Year Life Developer Driven

NET POSITIVE ENERGY LIVING BUILDING PETAL

105% of building's energy use supplied by on-site renewable energy on a new annual basis.

Sustainable Communities PAE LIVING BUILDING

NET POSITIVE WATER SUSTAINABLE WATER DISCHARGE LIVING BUILDING PETAL

100% of water use from captured precipitation or closed loop water system.

Net Positive Water

Creating a better environment

Marc P Brune pe, leed ap principal, mechanical engineer

marc.brune@pae-engineers.com

503-226-2921

522 SW 5th Ave, Suite 1500 Portland, OR 97204